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1. We consider a system of differential equations 

dzi/ dx = fi (z, x, u) (i = 1, .,., n) (1.1) 

containing in its right-hand side parameters a (al,. . . , a, ). Initial conditions 

G(0) = gi(a) (i = 1, . ..) n) (l-2) 

may also depend on parameters U which should be chosen so, as to minimize the funcr 

tional I = maxx ( F(z’, . . . . 2”; S; al, . . . . a,) [ , 1: E [0, z] (1.3) 

We assume that J@’ and F possess continuous derivatives in Z and U up to the second 

order. 

Solution of this problem which follows, is preceded by an auxilliary construction unre- 
lated to the functional (1.3). Namely, using the notation 

pki = dzi / aa, (k = 1, .*., r) (1.4) 

we construct Eqs. (see (1, f ) and (1,2) ) 

(1.5) 

with the corresponding initial conditions 

pki (0) = Q / auk (1.6) 

Introducing now a coupled system (a system for multipliers) 
3 ‘TL 
dx =- 2 hjfj f, 

z 
(i = 1, . . ., n) (1.7) 

j=l 

we shall multiply (1.5) by h and (1.7) by ,&t_ Summing over t and collecting like 

terms, we obtain d n 
TX 

dz zJ h* . ZPk’ = 2s 
I.* ;k (k=l,...,r) P.8) 

i-1 i=l .- 

which plays a major role in solving various problems of optimum control To minimize, 

for example, the value of Za(&) (Meyer’s problem), we integrate (1.8) from 0 to R, to 

obtain 

( i %&, - ( ; &PK' ),.., = i 5 Iif,:, dz 

Putting 
i=l i& 0 i=l 

hi IX=/ z 6is (&” is a Kronecker delta) 

we find 
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Minimum vaIue of Z? (4 ) is stationary in ak (k= I,. l , , r), hence 

( i hlPki )x, :- i i 
i=l 0 kl 

follow, which constitute the necessary conditions for a minimum. Necessary conditions 

of second order can also be obtained without difficulty. 
RetUt’ning to our problem we assume, that the absolute maximum of the function IFI 

relative to X s can be minimized by the parameter d) (al’, , , , s Q&O ) , 
Let us assume that for this value of the parameter, the required maximum is reached 

at the points T(‘), z(2), . . . . the set of which may be finite or infinite. 

In order to calculate the value of p,” at th point &), we shall introduce initial 

conditions (f.10) 

and we shall denote, under these conditions, the integrals of Eqs. (1,7), by his’v’. Formula 
(L 8) now yields 

P&~~“~=( $ h:(V$7ki ),, + “5’ $ W) I$% (4.11) 

i-1 0 i-1 

At this stage we must apply a general criterion given in 1943 by Chebotarev [l) for 
the minimax problem of a given function of two sets of variables, Namely, let the func- 

thR g, 1% -'et 3%; as, --*t a,) (1.12) 

of arguments X(X1,. . . , &) and parameters C&(dl ,. . . , a,) be: (a) bounded and pos- 
sessing continuous partial derivatives of first two orders with respect to parameters and 
(b) let the points X satisfying the inequality Cp(X, a) >9]0 where Cpo is a constant and 

a is in some vicinity of a’, form a compact set. 
Let the absolute maximum @(a) of (1,12) with respect to the arguments be attained 

at the points 39, 39, . . . and let the value a =a0 of the parameter minimize this 
maximum. Further, denote by Y(“l an r-dimensional vector whose components art 

(1.13) 

Then the following theorems giving, respectively, the sufficient and necessary condi- 
tions of minimax, are true. 

Theorem I. I’f the function (1.32) satisfies condition (a) and if, for any vector c! 

with components ~1,. , l , cr such a pair of vectors Y (14 and Y(y)1 can be found that 
the scalar products CY@) and CY(‘) are of opposite sign, then the function G(a) has a 

minimum at the point a = a”. 
Theorem 2. If the function fl. 12) satisiies conditions (a) and fb) and if such vec- 

tor 0 exists that all scalar products CY*W (v= 1,2,...) are of the same sign, then the 

function 4 (a) has no minimum at t2 = 8, 
Assertion of both theorems are unified in the requirement p and 23 that rhe system 

of linear Eqs. 
z ttzyyk(v.’ = 0 (k=l,...,r) (1.14) 
Y 

has positive ss~lutions in ,w, , 
There exists a case not covered by the above theorems, when we have a vector c for 

which CY(‘j 2 0 for all V , but not a vector c for which CY@) > 0. Then, the equi- 
valent formulation is as follows: let (1.14) have nonnegative~solutions and out of them, 
let~l,?B 2 , . . , e mp allow positive soludons. and the remaining m,,L null solutions ‘ If 



334 K.A.Lur’e 

rank of the matrix 

liY*‘“‘jJ (i = 1, *a*1 7; (y) = (11, **.I (P)) {i.Gj 

where 2? is the row index equal to ?“, then the function Cp(X, 0 > has a minimax at & = au, 

To apply this criterion to the previous minimax problem, we consider a function 

TJ (z, n) = I F fz’ (x, a), s2 fx, a), . . . . zn (s, a); 2; u) J 

Components of the vector Y’*)are given by 

Using Formula (1. II) we eliminate pllJ and insert the result into (1.14) to obtain the 

(a=a”,k=l,...,~) (1.17) 

Formula (1.6) yields an expression for (pkS),, in terms of parameters : points CC(V) 
are found from equations expressing the f&zt that the total derivative of C~(X, a) with 

respect to X, is equaI to zero , 
The requirement that (1. l?),has positive solutions replaces now the condition (1.9) 

and the corresponding second order condition in the Meyer problem. 

2 , In a number of cases, well known results of the formal theory of functions make 

it possible to bypass the direct investigation of the system (1.17). As an example, let 

us consider Eq, daIdx = z + a, zn -!- a,_~ x+l + ..*+ ~0 f2-$1 

We m%st choose the coefficients ai (6 = 0, 1, _, . , ?I.) and the initial value of 
a( 0) =a,, so, that the corresponding solution ax] would exhibit, over the interval 
[O, a 1, a minimum deviation from the given continuous function 4 (X) 

max 1 2 (2) - f (4 I = min 

~ultip~er x is not required here and Eq,(2.1) is integrable* Solution can be expressed 

in form of linear combination of functions 

e*, 1, x, x8, . . . xn w? 

with coefficients in form of linear combinations of parameters Q (6 = 0, . *. , ?2 + 1). 

As we know, the set (2.2) forms a Chebyshev system on any finite interval ( I_%], p_ 13), 
therefore we can find- the coefficients giving rn~rn~ deviation, using a tie following 

from the 5mdamemai Chebyshev theorem ( p ] , pp* 16 to ‘&I). Direct investigation of 

(1.17) would. in this case, lead to esrablishing a fundamental theorem for (2.2) in a 
manner stmilar to that employed in fl and ‘21 for the power system 
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